Antimicrobial Peptide Conformation as a Structural Determinant of Omptin Protease Specificity.

نویسندگان

  • John R Brannon
  • Jenny-Lee Thomassin
  • Samantha Gruenheid
  • Hervé Le Moual
چکیده

UNLABELLED Bacterial proteases contribute to virulence by cleaving host or bacterial proteins to promote survival and dissemination. Omptins are a family of proteases embedded in the outer membrane of Gram-negative bacteria that cleave various substrates, including host antimicrobial peptides, with a preference for cleaving at dibasic motifs. OmpT, the enterohemorrhagic Escherichia coli (EHEC) omptin, cleaves and inactivates the human cathelicidin LL-37. Similarly, the omptin CroP, found in the murine pathogen Citrobacter rodentium, which is used as a surrogate model to study human-restricted EHEC, cleaves the murine cathelicidin-related antimicrobial peptide (CRAMP). Here, we compared the abilities of OmpT and CroP to cleave LL-37 and CRAMP. EHEC OmpT degraded LL-37 and CRAMP at similar rates. In contrast, C. rodentium CroP cleaved CRAMP more rapidly than LL-37. The different cleavage rates of LL-37 and CRAMP were independent of the bacterial background and substrate sequence specificity, as OmpT and CroP have the same preference for cleaving at dibasic sites. Importantly, LL-37 was α-helical and CRAMP was unstructured under our experimental conditions. By altering the α-helicity of LL-37 and CRAMP, we found that decreasing LL-37 α-helicity increased its rate of cleavage by CroP. Conversely, increasing CRAMP α-helicity decreased its cleavage rate. This structural basis for CroP substrate specificity highlights differences between the closely related omptins of C. rodentium and E. coli. In agreement with previous studies, this difference in CroP and OmpT substrate specificity suggests that omptins evolved in response to the substrates present in their host microenvironments. IMPORTANCE Omptins are recognized as key virulence factors for various Gram-negative pathogens. Their localization to the outer membrane, their active site facing the extracellular environment, and their unique catalytic mechanism make them attractive targets for novel therapeutic strategies. Gaining insights into similarities and variations between the different omptin active sites and subsequent substrate specificities will be critical to develop inhibitors that can target multiple omptins. Here, we describe subtle differences between the substrate specificities of two closely related omptins, CroP and OmpT. This is the first reported example of substrate conformation acting as a structural determinant for omptin activity between OmpT-like proteases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Biomolecular Conformation on Docking Simulation: A Case Study on a Potent HIV-1 Protease Inhibitor

Human immunodeficiency virus infection / acquired immunodeficiency syndrome (HIV/AIDS) is a disease pertained to the human immune system. Given its crucial role in viral replication, HIV-1 protease (HIV-1 PR) is a prime therapeutic target in AIDS therapy. In this regard, the dynamic aspects of ligand-enzyme interactions may indicate an important role of conformational variability in HIV-1 PR in...

متن کامل

Effect of Biomolecular Conformation on Docking Simulation: A Case Study on a Potent HIV-1 Protease Inhibitor

Human immunodeficiency virus infection / acquired immunodeficiency syndrome (HIV/AIDS) is a disease pertained to the human immune system. Given its crucial role in viral replication, HIV-1 protease (HIV-1 PR) is a prime therapeutic target in AIDS therapy. In this regard, the dynamic aspects of ligand-enzyme interactions may indicate an important role of conformational variability in HIV-1 PR in...

متن کامل

Modifying the Substrate Specificity of Carcinoscorpius rotundicauda Serine Protease Inhibitor Domain 1 to Target Thrombin

Protease inhibitors play a decisive role in maintaining homeostasis and eliciting antimicrobial activities. Invertebrates like the horseshoe crab have developed unique modalities with serine protease inhibitors to detect and respond to microbial and host proteases. Two isoforms of an immunomodulatory two-domain Kazal-like serine protease inhibitor, CrSPI-1 and CrSPI-2, have been recently identi...

متن کامل

Factor Xa active site substrate specificity with substrate phage display and computational molecular modeling.

Structural origin of substrate-enzyme recognition remains incompletely understood. In the model enzyme system of serine protease, canonical anti-parallel beta-structure substrate-enzyme complex is the predominant hypothesis for the substrate-enzyme interaction at the atomic level. We used factor Xa (fXa), a key serine protease of the coagulation system, as a model enzyme to test the canonical c...

متن کامل

The omptins of Yersinia pestis and Salmonella enterica cleave the reactive center loop of plasminogen activator inhibitor 1.

Plasminogen activator inhibitor 1 (PAI-1) is a serine protease inhibitor (serpin) and a key molecule that regulates fibrinolysis by inactivating human plasminogen activators. Here we show that two important human pathogens, the plague bacterium Yersinia pestis and the enteropathogen Salmonella enterica serovar Typhimurium, inactivate PAI-1 by cleaving the R346-M347 bait peptide bond in the reac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 197 22  شماره 

صفحات  -

تاریخ انتشار 2015